Definiciones
i. Sean F y F’ dos puntos de un plano (F F’). Se define la hipérbola de focos F y F’ como el lugar geométrico de los puntos del plano tales que la diferencia de sus distancia a los focos es constante e igual a 2a. (a > 0).
ii. Las rectas: La que pasa por los focos F y F’ y la recta mediatriz del segmento F’F se llaman:Ejes de simetría de la hipérbola.
iii. El punto de intersección 0 de dos ejes de simetría, se llama CENTRO de la hipérbola. Los puntos A y A’ se llaman: VERTICES de la hipérbola.
Las hipérbolas aparecen en muchas situaciones reales, por ejemplo, un avión que vuela a velocidad supersónica paralelamente a la superficie de la tierra, deja una huella acústica hiperbólica sobre la superficie. La intersección de una pared y el cono de luz que emana de una lámpara de mesa con pantalla troncocónica, es una hipérbola.
Representación gráfica y características de una hipérbola
View more documents from viurent.
La Hipérbola
La hipérbola es el conjunto de todos los puntos de un plano cartesiano tales que la diferencia de sus distancias a dos puntos fijos del plano llamados focos, es igual a una constante positiva (2a), en donde "a" puede ser mayor o menor que "b" y la posición de la hipérbola se determina dentro del plano dependiendo si dentro de la ecuación "x" o "y" es positivo.
Una hipérbola parte de sus vértices abriéndose cada vez más y tendiendo hacia dos rectas llamadas asíntotas, las cuales nunca llegan a tocar. Al rectángulo que forman las asíntotas, se le llama rectángulo auxiliar, y sus lados tiene por longitud 2a y 2b. Los vértices de la hipérbola son los puntos de intersección del eje principal y el rectángulo auxiliar. Al prolongar las diagonales del rectángulo se obtienen las asíntotas; se traza cada rama de la hipérbola a través de su respectivo vértice usando las asíntotas como guías.